Ballash, G. A., Dubey, J. P., Kwok, O. C. H., Shoben, A. B., Robison, T. L., Kraft, T. J., & Dennis, P. M. 2014. Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) and Free-Roaming Cats (Felis catus) Across a Suburban to Urban Gradient in Northeastern Ohio. EcoHealth, 1-9.
Felids serve as the definitive host of Toxoplasma gondii contaminating environments with oocysts. White-tailed deer (WTD; Odocoileus virginianus) are used as sentinel species for contaminated environments as well as a potential source for human foodborne infection with T. gondii. Here we determine the seroprevalence of T. gondii in a WTD and felid population, and examine those risk factors that increase exposure to the parasite. Serum samples from 444 WTD and 200 free-roaming cats (Felis catus) from urban and suburban reservations were tested for T. gondii antibodies using the modified agglutination test (MAT, cut-off 1:25). Antibodies to T. gondii were found in 261 (58.8%) of 444 WTD, with 164 (66.1%) of 248 from urban and 97 (49.5%) of 196 from suburban regions. Significant risk factors for seroprevalence included increasing age (P < 0.0001), reservation type (P < 0.0001), and household densities within reservation (P < 0.0001). Antibodies to T. gondii were found in 103 (51.5%) of 200 cats, with seroprevalences of 79 (51%) of 155 and 24 (53.3%) of 45 from areas surrounding urban and suburban reservations, respectively. Seroprevalence did not differ by age, gender, or reservation among the cats’ sample. Results indicate WTD are exposed by horizontal transmission, and this occurs more frequently in urban environments. The difference between urban and suburban cat densities is the most likely the reason for an increased seroprevalence in urban WTD. These data have public health implications for individuals living near or visiting urban areas where outdoor cats are abundant as well as those individuals who may consume WTD venison.
Felids serve as the definitive host of Toxoplasma gondii contaminating environments with oocysts. White-tailed deer (WTD; Odocoileus virginianus) are used as sentinel species for contaminated environments as well as a potential source for human foodborne infection with T. gondii. Here we determine the seroprevalence of T. gondii in a WTD and felid population, and examine those risk factors that increase exposure to the parasite. Serum samples from 444 WTD and 200 free-roaming cats (Felis catus) from urban and suburban reservations were tested for T. gondii antibodies using the modified agglutination test (MAT, cut-off 1:25). Antibodies to T. gondii were found in 261 (58.8%) of 444 WTD, with 164 (66.1%) of 248 from urban and 97 (49.5%) of 196 from suburban regions. Significant risk factors for seroprevalence included increasing age (P < 0.0001), reservation type (P < 0.0001), and household densities within reservation (P < 0.0001). Antibodies to T. gondii were found in 103 (51.5%) of 200 cats, with seroprevalences of 79 (51%) of 155 and 24 (53.3%) of 45 from areas surrounding urban and suburban reservations, respectively. Seroprevalence did not differ by age, gender, or reservation among the cats’ sample. Results indicate WTD are exposed by horizontal transmission, and this occurs more frequently in urban environments. The difference between urban and suburban cat densities is the most likely the reason for an increased seroprevalence in urban WTD. These data have public health implications for individuals living near or visiting urban areas where outdoor cats are abundant as well as those individuals who may consume WTD venison.
No comments:
Post a Comment