Les hommes ont oublié cette vérité. Mais tu ne dois pas l'oublier, dit le renard. Tu deviens responsable pour toujours de ce que tu as apprivoisé.
Le Petit Prince, chap. 21

Wednesday, 5 June 2013

Domestic cat gene introgression into wild cat in Europe

Randi, E., Pierpaoli, M., Beaumont, M., Ragni, B., & Sforzi, A. (2001). Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. Molecular Biology and Evolution, 18(9), 1679-1693.

Crossbreeding with free-ranging domestic cats is supposed to threaten the genetic integrity of wildcat populations in Europe, although the diagnostic markers to identify "pure" or "admixed" wildcats have never been clearly defined. Here we use mitochondrial (mt) DNA sequences and allelic variation at 12 microsatellite loci to genotype 128 wild and domestic cats sampled in Italy which were preclassified into three separate groups: European wildcats (Felis silvestris silvestris), Sardinian wildcats (Felis silvestris libyca), and domestic cats (Felis silvestris catus), according to their coat color patterns, collection localities, and other phenotypical traits, independently of any genetic information. For comparison, we included some captive-reared hybrids of European wild and domestic cats. Genetic variability was significantly partitioned among the three groups (mtDNA estimate of F(ST) = 0.36; microsatellite estimate of R(ST) = 0.30; P < 0.001), suggesting that morphological diversity reflects the existence of distinct gene pools. Multivariate ordination of individual genotypes and clustering of interindividual genetic distances also showed evidence of distinct cat groups, partially congruent with the morphological classification. Cluster analysis, however, did not enable hybrid cats to be identified from genetic information alone, nor were all individuals assigned to their populations. In contrast, a Bayesian admixture analysis simultaneously assigned the European wildcats, the Sardinian wildcats, and the domestic cats to different clusters, independent of any prior information, and pointed out the admixed gene composition of the hybrids, which were assigned to more than one cluster. Only one putative Sardinian wildcat was assigned to the domestic cat cluster, and one presumed European wildcat showed mixed (hybrid) ancestry in the domestic cat gene pool. Mitochondrial DNA sequences indicated that three additional presumed European wildcats might have hybrid ancestry. These four cats were sampled from the same area in the northernmost edge of the European wildcat distribution in the Italian Apennines. Admixture analyses suggest that wild and domestic cats in Italy are distinct, reproductively isolated gene pools and that introgression of domestic alleles into the wild-living population is very limited and geographically localized.

Pierpaoli, M., Birò, Z.S., Herrmann, M., Hupe, K., Fernandes, M., Ragni, B., Szemethy, L. & Randi, E. (2003). Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Molecular Ecology 12: 2585-2598.

The genetic integrity and evolutionary persistence of declining wildcat populations are threatened by crossbreeding with widespread free-living domestic cats. Here we use allelic variation at 12 microsatellite loci to describe genetic variation in 336 cats sampled from nine European countries. Cats were identified as European wildcats (Felis silvestris silvestris), Sardinian wildcats (F. s. libyca) and domestic cats (F. s. catus), according to phenotypic traits, geographical locations and independently of any genetic information. Genetic variability was significantly partitioned among taxonomic groups (FST = 0.11; RST = 0.41; P < 0.001) and sampling locations (FST = 0.07; RST = 0.06; P < 0.001), suggesting that wild and domestic cats are subdivided into distinct gene pools in Europe. Multivariate and Bayesian clustering of individual genotypes also showed evidence of distinct cat groups, congruent with current taxonomy, and suggesting geographical population structuring. Admixture analyses identified cryptic hybrids among wildcats in Portugal, Italy and Bulgaria, and evidenced instances of extensive hybridization between wild and domestic cats sampled in Hungary. Cats in Hungary include a composite assemblage of variable phenotypes and genotypes, which, as previously documented in Scotland, might originate from long lasting hybridization and introgression. A number of historical, demographic and ecological conditions can lead to extensive crossbreeding between wild and domestic cats, thus threatening the genetic integrity of wildcat populations in Europe.

Lecis, R., Pierpaoli, M., Biro, Z. S., Szemethy, L., Ragni, B., Vercillo, F., & Randi, E. (2006). Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Molecular Ecology, 15(1), 119-131.

Methods recently developed to infer population structure and admixture mostly use individual genotypes described by unlinked neutral markers. However, Hardy–Weinberg and linkage disequilibria among independent markers decline rapidly with admixture time, and the admixture signals could be lost in a few generations. In this study, we aimed to describe genetic admixture in 182 European wild and domestic cats (Felis silvestris), which hybridize sporadically in Italy and extensively in Hungary. Cats were genotyped at 27 microsatellites, including 21 linked loci mapping on five distinct feline linkage groups. Genotypes were analysed with structure 2.1, a Bayesian procedure designed to model admixture linkage disequilibrium, which promises to assess efficiently older admixture events using tightly linked markers. Results showed that domestic and wild cats sampled in Italy were split into two distinct clusters with average proportions of membership Q > 0.90, congruent with prior morphological identifications. In contrast, free-living cats sampled in Hungary were assigned partly to the domestic and the wild cat clusters, with Q < 0.50. Admixture analyses of individual genotypes identified, respectively, 5/61 (8%), and 16–20/65 (25–31%) hybrids among the Italian wildcats and Hungarian free-living cats. Similar results were obtained in the past using unlinked loci, although the new linked markers identified additional admixed wildcats in Italy. Linkage analyses confirm that hybridization is limited in Italian, but widespread in Hungarian wildcats, a population that is threatened by cross-breeding with free-ranging domestic cats. The total panel of 27 loci performed better than the linked loci alone in the identification of domestic and known hybrid cats, suggesting that a large number of linked plus unlinked markers can improve the results of admixture analyses. Inferred recombination events led to identify the population of origin of chromosomal segments, suggesting that admixture mapping experiments can be designed also in wild populations.


See more on domestic cat gene introgression in wildcat

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...